Package: RLT (via r-universe)

September 2, 2024
Type Package

Title Reinforcement Learning Trees
Version 4.2.6

Description Random forest with a variety of additional features for
regression, classification, survival analysis and graphical
model. New features include parallel computing with OpenMP,
reproduciblity with random seeds, variance and confidence band
estimations, embedded model for selecting splitting varibles
and constructing linear combination splits, observaton and
variable weights, setting and tracking subjects used in each
tree, etc.

License GPL (>=2)

Encoding UTF-8

LazyData TRUE

Imports Rcpp (>= 1.0.9), stats, utils, Matrix, orthoDr, glmnet
LinkingTo Rcpp, ReppArmadillo, dgrng, BH, sitmo

URL https://cran.r-project.org/package=RLT,
https://teazrq.github.io/RLT/

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Repository https://teazrq.r-universe.dev

RemoteUrl https://github.com/teazrqg/rlt

RemoteRef HEAD

RemoteSha de8b11f0717280b94cec79fddd9ee29dd3725873

Contents

CINAEX
forest.kernel
GELONC.ATCE e e e e e e e e

https://cran.r-project.org/package=RLT
https://teazrq.github.io/RLT/

2 forest.kernel

getsurvband e e 4
MYEESE . . ¢ o v o e e e e e e e e e e e e e e e e e 5
predict RLT o o e 5
print RLT 7
RLT . e 7
Index 12
cindex C-index
Description

Calculate c-index for survival data

Usage

cindex(y, censor, pred)

Arguments
y survival time
censor The censoring indicator if survival model is used
pred the predicted value for each subject
Value
c-index

forest.kernel

random forest kernel

Description

Get random forest induced kernel weight matrix of testing samples
or between any two sets of data. This is an experimental feature.
Use at your own risk.

get.one.tree

Usage

forest.kernel(
object,
X1 = NULL,
X2 = NULL,

vs.train = FALSE,
verbose = FALSE,

Arguments

object
X1
X2

vs.train

verbose

Value

A fitted RLT object.
The dataset for prediction. This calculates an n; x n; kernel matrix of X1.

The dataset for reference/training. If X2 is supplied, then calculate an n; X nq
kernel matrix. If vs.train is used, then this must be the original training data.

To calculate the kernel weights with respect to the training data. This is slightly
different than supplying the training data to X2 due to re-samplings of the train-
ing process. To use this feature, you must specify resample.track = TRUE in
param.control when fitting the forest

Whether fitting should be printed.

... Additional arguments.

A kernel matrix that contains kernel weights for each observation in X1 with respect to X1

get.one.tree

Print a single tree

Description

Print a single fitted tree from a forest object

Usage
get.one.tree(x, tree =1, ...)
Arguments
X A fitted RLT object
tree the tree number, starting from 1 to ntrees.

4 get.surv.band

get.surv.band

get.surv.band

Description

Calculate the survival function (two-sided) confidence band from
a RLT survival prediction.

Usage
get.surv.band(
X ’
i=o,
alpha = 0.05,
approach = "naive-mc”,
nsim = 1000,
r=3,
)
Arguments
X A RLT prediction object. This must be an object calculated from a forest with
var.ready = TRUE.
i Observation number in the prediction. Default to calculate all (z = 0)
alpha alpha level for interval (/2,1 — «/2)
approach What approach is used to calculate the confidence band. Can be

* naive-mc: positive-definite projection of the covariance matrix. the confi-
dence band is non-smooth

* smoothed-mc: use a smoothed marginal variance to perform the Monte
Carlo approximation of the critical value. This is only recommended for
large number of time points.

* smoothed-1r: use a smoothed low-rank approximation of the covariance
matrix and apply an adaptive Bonferroni correction to derive the critical
values. Note that this approach relies on the assumption of the smoothness
and low rank of the covariance matrix.

nsim number of simulations for estimating the Monte Carlo critical value. Set this to
be a large number. Default is 1000.
r maximum number of ranks used in the smoothed-1r approximation. Usually 5

is enough for approximating the covariance matrix due to smoothness.

mytest

mytest mytest

Description

my function

Usage

mytest(n, ...)

Arguments

n n

other arguments

Value

output

predict.RLT prediction using RLT

Description

Predict the outcome (regression, classification or survival) using a fitted RLT object

Usage
S3 method for class 'RLT'
predict(
object,
testx = NULL,

var.est = FALSE,
keep.all = FALSE,
ncores = 1,
verbose = 0,

Arguments

object
testx

var.est

keep.all

ncores

verbose

Value

predict. RLT

A fitted RLT object
The testing samples, must have the same structure as the training samples

Whether to estimate the variance of each testing data. The original forest must
be fitted with var.ready = TRUE. For survival forests, calculates the covariance
matrix over all observed time points and calculates critical value for the confi-
dence band.

whether to keep the prediction from all trees. Warning: this can occupy a large
storage space, especially in survival model

number of cores

print additional information

A RLT prediction object, constructed as a list consisting

Prediction

Variance

Prediction
if var.est = TRUE and the fitted object is var.ready = TRUE

For Survival Forests

hazard predicted hazard functions

CumHazard predicted cumulative hazard function

Survival predicted survival function

Allhazard if keep.all = TRUE, the predicted hazard function for each observation and each
tree

A11CHF if keep.all = TRUE, the predicted cumulative hazard function for each observa-
tion and each tree

Cov if var.est = TRUE and the fitted object is var. ready = TRUE. For each test sub-
ject, a matrix of size NFail x NFail where NFail is the number of observed failure
times in the training data

Var if var.est = TRUE and the fitted object is var. ready = TRUE. Marginal variance
for each subject

timepoints ordered observed failure times from the training data

MarginalVar if var.est = TRUE and the fitted object is var . ready = TRUE. Marginal variance
for each subject from the Cov matrix projected to the nearest positive definite
matrix

MarginalVarSmooth
if var.est = TRUE and the fitted object is var . ready = TRUE. Marginal variance
for each subject from the Cov matrix projected to the nearest positive definite
matrix and then smoothed using Gaussian kernel smoothing

CVproj if var.est = TRUE and the fitted object is var.ready = TRUE. Critical values

to calculate confidence bands around cumulative hazard predictions at several
confidence levels. Calculated using MarginalVar

print. RLT 7

CVprojSmooth if var.est = TRUE and the fitted object is var.ready = TRUE. Critical values
to calculate confidence bands around cumulative hazard predictions at several
confidence levels. Calculated using MarginalVarSmooth

print.RLT Print a RLT object

Description

Print a RLT object

Usage
S3 method for class 'RLT'
print(x, ...)

Arguments

X A fitted RLT object

RLT

Reinforcement Learning Trees

Description

Fit models for regression, classification and survival
analysis using reinforced splitting rules. The model
fits regular random forest models by default unless the
parameter \code{reinforcement} is set to “"TRUE"". Using
\code{reinforcement = TRUE} activates embedded model for
splitting variable selection and allows linear combination
split. To specify parameters of embedded models, see
definition of \code{param.control} for details.

Usage
RLT(
X)
y’
censor = NULL,
model = NULL,

ntrees = if (reinforcement) 100 else 500,

mtry = max(1, as.integer(ncol(x)/3)),
nmin = max(1, as.integer(log(nrow(x)))),
split.gen = "random”,

nsplit = 1,

resample.replace = TRUE,

resample.prob

= if (resample.replace) 1 else 0.8,

resample.preset = NULL,

obs.w = NULL,
var.w = NULL,
importance =
reinforcement
param.control
ncores = 0,
verbose = 0,
seed = NULL,

Arguments

X

y
censor

model

ntrees

mtry

nmin

split.gen

nsplit

FALSE,

= FALSE,
= list(),

A matrix or data.frame of features. If x is a data.frame, then all factors are
treated as categorical variables, which will go through an exhaustive search of
splitting criteria.

Response variable. a numeric/factor vector.

Censoring indicator if survival model is used.

n on non non

The model type: "regression”, "classification”, "quantile”, "survival”
or "graph”.

Number of trees, ntrees = 100 if reinforcement is used and ntrees = 1000 oth-
erwise.
Number of randomly selected variables used at each internal node.

Terminal node size. Splitting will stop when the internal node size is less equal
to nmin.

How the cutting points are generated: "random”, "rank” or "best"”. If mini-
mum child node size is enforced (alpha > 0), then "rank” and "best” should
be used.

Number of random cutting points to compare for each variable at an internal
node.

resample.replace

resample.prob
resample.preset

Whether the in-bag samples are obtained with replacement.

Proportion of in-bag samples.

A pre-specified matrix for in-bag data indicator/count matrix. It must be an nx
ntrees matrix with integer entries. Positive number indicates the number of
copies of that observation (row) in the corresponding tree (column); zero indi-
cates out-of-bag; negative values indicates not being used in either. Extremely
large counts should be avoided. The sum of each column should not exceed n.

obs.w

var.w

importance

reinforcement

param.control

Observation weights. The weights will be used for calculating the splitting
scores, such as a weighted variance reduction or weighted gini index. But they
will not be used for sampling observations. In that case, one can pre-specify
resample.preset instead for balanced sampling, etc. For survival analysis,
observation weights are not implemented in the "logrank” or "suplogrank”
tests, due to the difficulty of calculating the variance of test statistic. However,
it is used in the "coxgrad” splitting rule. For other models, this feature is cur-
rently not available.

Variable weights. If this is supplied, the default is to perform weighted sam-
pling of mtry variables. For other usage, see the details of split.rule in
param.control.

Whether to calculate variable importance measures. When set to "TRUE" (or
"permute”), the calculation follows Breiman’s original permutation strategy. If
setto "distribute”, then it sends the oob data to both child nodes with weights
proportional to their sample sizes. Hence the final prediction is a weighted av-
erage of all possible terminal nodes that a perturbed observation could fall into.
This feature is currently only available in regression and classification models.

Should reinforcement splitting rule be used. Default is "FALSE", i.e., regu-
lar random forests with marginal search of splitting variable. When it is acti-
vated, an embedded model is fitted to find the best splitting variable or a linear
combination of them, if linear.comb > 1. They can also be specified in
param.control.

A list of additional parameters. This can be used to specify other features in
a random forest or set embedded model parameters for reinforcement splitting
rules. Using reinforcement = TRUE will automatically generate some default
tuning for the embedded model. This mode is currently only available in regres-
sion. They are not necessarily optimized.

* embed.ntrees: number of trees in the embedded model

* embed.mtry: number or proportion of variables

* embed.nmin: terminal node size

n on

* embed.split.genrandom cutting point search method (" random”, "rank"
or "best")

* embed.nsplit number of random cutting points
* embed.resample.replace whether to sample with replacement

* embed.resample.prob: proportion of samples (of the internal node) in the
embedded model

* embed.mute muting rate
* embed.protect number of protected variables

* embed. threshold threshold, as a fraction of the best VI, for being included
in the protected set at an internal node.

\code{linear.comb} is a separate feature that can be

activated with or without using reinforcement. It creates

linear combination of features as the splitting rule.
Currently only available for regression.
\itemize{

10

RLT

\item In reinforcement mode, a linear combination is created
using the top continuous variables from the embedded
model. If a categorical variable is the best, then
a regular split will be used. The splitting point
will be searched based on \code{split.rule} of the

model.

\item In non-reinforcement mode, a marginal screening
is performed and the top features are used to construct
the linear combination. This is an experimental feature.

}

\code{split.rule} is used to specify the criteria used
to compare different splittings. Here are the available
choices. The first one is the default:

\itemize{
\item Regression: ~"var”" (variance reduction); ~"pca""
and ~"sir"" can be used for linear combination splits

\item Classification: ~"gini"~ (gini index)

\item Survival: ~"logrank”" (log-rank test), "~ "suplogrank"”",
“"coxgrad"" .
\item Quantile: ~"ks"> (Kolmogorov-Smirnov test)
\item Graph: ~"spectral”" (spectral embedding with variance
reduction)
3

\code{resample.track} indicates whether to keep track
of the observations used in each tree.

\code{var.ready} this is a feature to allow calculating variance
(hence confidence intervals) of the random forest prediction.
Currently only available for regression (Xu, Zhu & Shao, 2023)
and confidence band in survival models (Formentini, Liang & Zhu, 2023).
Please note that this only perpares the model fitting
so that it is ready for the calculation. To obtain the
confidence intervals, please see the prediction function.
Specifying \code{var.ready = TRUE} has the following effect
if these parameters are not already provided. For details
of their restrictions, please see the orignal paper.
\itemize{
\item \code{resample.preset} is constructed automatically
\item \code{resample.replace} is set to “FALSE"
\item \code{resample.prob} is set to \egn{n / 2}
\item \code{resample.track} is set to “TRUE®
3

It is recommended to use a very large \code{ntrees},
e.g, 10000 or larger. For \code{resample.prob} greater
than \egn{n / 23}, one should consider the bootstrap

approach in Xu, Zhu & Shao (2023).

\code{alpha} force a minimum proportion of samples
(of the parent node) in each child node.

\code{failcount} specifies the unique number of failure

time points used in survival model. By default, all failure

time points will be used. A smaller number may speed up

the computation. The time points will be chosen uniformly

on the quantiles of failure times, while must include the
minimum and the maximum.

ncores Number of CPU logical cores. Default is 0 (using all available cores).
verbose Whether info should be printed.
seed Random seed number to replicate a previously fitted forest. Internally, the

xoshiro256++ generator is used. If not specified, a seed will be generated au-
tomatically and recorded.

Additional arguments.

Value
A RLT fitted object, constructed as a list consisting

» FittedForestFitted tree structures

* VarlmpVariable importance measures, if importance = TRUE

* PredictionOut-of-bag prediction

* ErrorOut-of-bag prediction error, adaptive to the model type

¢ ObsTrackProvided if resample.track = TRUE, var.ready = TRUE, or if resample.preset
was supplied. This is an n X ntrees matrix that has the same meaning as resample.preset.

For classification forests, these items are further provided or will replace the regression version

¢ NClassThe number of classes
* ProbOut-of-bag predicted probability

For survival forests, these items are further provided or will replace the regression version

* timepointsordered observed failure times
* NFailThe number of observed failure times

* PredictionOut-of-bag prediciton of hazard function

References

e Zhu, R., Zeng, D., & Kosorok, M. R. (2015) "Reinforcement Learning Trees." Journal of the
American Statistical Association. 110(512), 1770-1784.

e Xu, T, Zhu, R., & Shao, X. (2023) "On Variance Estimation of Random Forests with Infinite-
Order U-statistics." arXiv preprint arXiv:2202.09008.

e Formentini, S. E., Wei L., & Zhu, R. (2022) "Confidence Band Estimation for Survival Ran-
dom Forests." arXiv preprint arXiv:2204.12038.

Index

cindex, 2
forest.kernel, 2

get.one.tree, 3
get.surv.band, 4

mytest, 5

predict.RLT, 5
print.RLT,7

RLT, 7

12

	cindex
	forest.kernel
	get.one.tree
	get.surv.band
	mytest
	predict.RLT
	print.RLT
	RLT
	Index

